๐ฌChat on CSV
Python Implementation
Importing Components
from genai_stack.stack.stack import Stack
from genai_stack.etl.langchain import LangchainETL
from genai_stack.embedding.langchain import LangchainEmbedding
from genai_stack.vectordb.chromadb import ChromaDB
from genai_stack.prompt_engine.engine import PromptEngine
from genai_stack.model.gpt3_5 import OpenAIGpt35Model
from genai_stack.retriever.langchain import LangChainRetriever
from genai_stack.memory.langchain import ConversationBufferMemoryInitializing Stack Components
ETL
etl = LangchainETL.from_kwargs(name="CSVLoader", fields={"file_path": "/path/sample.csv"})Embeddings
config = {
"model_name": "sentence-transformers/all-mpnet-base-v2",
"model_kwargs": {"device": "cpu"},
"encode_kwargs": {"normalize_embeddings": False},
}
embedding = LangchainEmbedding.from_kwargs(name="HuggingFaceEmbeddings", fields=config)VectorDB
Model
Prompt Engine
Retriever
Memory
Initializing Stack
Stack
Performing ETL operations
run() will execute Extract, Transform and Load operations.
Now you can start asking your queries.
Last updated