๐ฅQuickstart
from langchain.docstore.document import Document as LangDocument
from genai_stack.vectordb.chromadb import ChromaDB
from genai_stack.vectordb.weaviate_db import Weaviate
from genai_stack.embedding.utils import get_default_embedding
from genai_stack.stack.stack import Stack
embedding = get_default_embedding()
chromadb = ChromaDB.from_kwargs()
chroma_stack = Stack(model=None, embedding=embedding, vectordb=chromadb)
# Add your documents
chroma_stack.vectordb.add_documents(
documents=[
LangDocument(
page_content="Some page content explaining something", metadata={"some_metadata": "some_metadata"}
)
]
)
chroma_stack.vectordb.search("page")
# Output
# Your search results Last updated