For quickstart, you can rely on the default embedding utils. By default we use "HuggingFaceEmbedding" This eliminates the need to configure embeddings, making the process effortless.
To utilize the vectordb configuration with the default embedding:
=> Vectordb Usage
from langchain.docstore.document import Document as LangDocument from genai_stack.vectordb.chromadb import ChromaDB from genai_stack.vectordb.weaviate_db import Weaviate from genai_stack.embedding.utils import get_default_embedding from genai_stack.stack.stack import Stack embedding = get_default_embedding() chromadb = ChromaDB.from_kwargs() chroma_stack = Stack(model=None, embedding=embedding, vectordb=chromadb) # Add your documents chroma_stack.vectordb.add_documents( documents=[ LangDocument( page_content="Some page content explaining something", metadata={"some_metadata": "some_metadata"} ) ] ) chroma_stack.vectordb.search("page") # Output # Your search results
Last updated 1 year ago