GenAI Stack (old)
v0.2.0
v0.2.0
  • Getting Started
    • 💬Introduction
    • 🚀Quickstart with colab
    • 📘Default Data Types
    • 🪛Installation
  • Components
    • ✨Introduction
    • 🚜ETL
      • 🔥Quickstart
      • 🦜Langchain
      • 🦙LLama Hub
    • 🌱Embeddings
      • 🔥Quickstart
      • 🦜Langchain
      • 📖Advanced Usage
    • 🔮Vector Database
      • 🔥Quickstart
      • 📦Chromadb
      • 📦Weaviate
      • 📖Advanced Usage
    • 📚Prompt Engine
      • 🔥Quickstart
      • 📖Advanced Usage
    • 📤Retrieval
      • 🔥Quickstart
      • 📖Advanced Usage
    • ️️️🗃️ LLM Cache
      • 🔥Quickstart
    • 📦Memory
      • 🔥Quickstart
      • 📖Advanced Usage
    • 🦄LLMs
      • OpenAI
      • GPT4All
      • Hugging Face
      • Custom Model
  • Advanced Guide
    • 💻GenAI Stack API Server
    • 🔃GenAI Server API's Reference
  • Example Use Cases
    • 💬Chat on PDF
    • 💬Chat on CSV
    • 💬Similarity Search on JSON
    • 📖Document Search
    • 💬RAG pipeline
    • 📚Information Retrieval Pipeline
  • 🧑CONTRIBUTING.md
Powered by GitBook
On this page
  1. Components
  2. Vector Database

Quickstart

For quickstart, you can rely on the default embedding utils. By default we use "HuggingFaceEmbedding" This eliminates the need to configure embeddings, making the process effortless.

To utilize the vectordb configuration with the default embedding:

=> Vectordb Usage

from langchain.docstore.document import Document as LangDocument

from genai_stack.vectordb.chromadb import ChromaDB
from genai_stack.vectordb.weaviate_db import Weaviate
from genai_stack.embedding.utils import get_default_embedding
from genai_stack.stack.stack import Stack


embedding = get_default_embedding()
chromadb = ChromaDB.from_kwargs()
chroma_stack = Stack(model=None, embedding=embedding, vectordb=chromadb)

# Add your documents
chroma_stack.vectordb.add_documents(
            documents=[
                LangDocument(
                    page_content="Some page content explaining something", metadata={"some_metadata": "some_metadata"}
                )
            ]
        )
chroma_stack.vectordb.search("page")

# Output 
# Your search results 
PreviousVector DatabaseNextChromadb

Last updated 1 year ago

🔮
🔥