GPT4All
How to configure and use it?
Supported Parameters
model(str) - Set which model you want to use. Defaults toorca-mini-3b.ggmlv3.q4_0model_path(str) - Give a path where you want to load the model. Default to the current directory.parameters(Optional[Gpt4AllParameters]) - An optional instance of theGpt4AllParametersclass that contains various configuration parameters for fine-tuning the behavior of the GPT-4All model. Below is the list of all the attributes ofparametersbackend(Optional[str]): The backend to use (optional).max_tokens(int): The token context window.n_parts(int): The number of parts to split the model into.seed(int): The random seed to use.f16_kv(bool): Whether to use half-precision for key/value cache.logits_all(bool): Whether to return logits for all tokens.vocab_only(bool): Whether to load only the vocabulary without weights.use_mlock(bool): Force the system to keep the model in RAM.embedding(bool): Use embedding mode only.n_threads(Optional[int]): Number of threads to use.n_predict(Optional[int]): The maximum number of tokens to generate.temp(Optional[float]): The temperature for sampling.top_p(Optional[float]): The top-p value for sampling.top_k(Optional[int]): The top-k value for sampling.echo(Optional[bool]): Whether to echo the prompt.stop(Optional[List[str]]): A list of strings to stop generation when encountered.repeat_last_n(Optional[int]): Last n tokens to penalize.repeat_penalty(Optional[float]): The penalty to apply to repeated tokens.n_batch(int): Batch size for prompt processing.streaming(bool): Whether to stream the results or not.allow_download(bool): Whether to download the model if it does not exist locally.client(Any): A client object (optional).
Running in a Colab/Kaggle/Python scripts(s)
from genai_stack.model import Gpt4AllModel
from genai_stack.stack.stack import Stack
llm = Gpt4AllModel.from_kwargs()
Stack(model=llm) # Initialize stack
model_response = llm.predict("How many countries are there in the world?")
print(model_response["output"])Import the model from
genai_stack.modelInstantiate the class with parameters you want to customize
Last updated