๐Ÿ’ฌChat on PDF

Python Implementation

Importing Components

from genai_stack.stack.stack import Stack
from genai_stack.etl.langchain import LangchainETL
from genai_stack.embedding.langchain import LangchainEmbedding
from genai_stack.vectordb.chromadb import ChromaDB
from genai_stack.prompt_engine.engine import PromptEngine
from genai_stack.model.gpt3_5 import OpenAIGpt35Model
from genai_stack.retriever.langchain import LangChainRetriever
from genai_stack.memory.langchain import ConversationBufferMemory

Initializing Stack Components

ETL

etl.json

{
    "name": "PyPDFLoader",
    "fields": {
        "file_path": "/path/to/sample.pdf"
    }
}

Embeddings

embeddings.json

VectorDB

Model

Prompt Engine

prompt_engine.json

Retriever

Memory

Initializing Stack

Stack

Performing ETL operations

run() will execute Extract, Transform and Load operations.

Now you can start asking your queries.

Last updated